
Polyspace® Model Link Products

User’s Guide

R2013a

How to Contact MathWorks

www.mathworks.com Web
comp.soft-sys.matlab Newsgroup
www.mathworks.com/contact_TS.html Technical Support

suggest@mathworks.com Product enhancement suggestions
bugs@mathworks.com Bug reports
doc@mathworks.com Documentation error reports
service@mathworks.com Order status, license renewals, passcodes
info@mathworks.com Sales, pricing, and general information

508-647-7000 (Phone)

508-647-7001 (Fax)

The MathWorks, Inc.
3 Apple Hill Drive
Natick, MA 01760-2098
For contact information about worldwide offices, see the MathWorks Web site.

Polyspace® Model Link Products User’s Guide

© COPYRIGHT 1999–2013 by The MathWorks, Inc.
The software described in this document is furnished under a license agreement. The software may be used
or copied only under the terms of the license agreement. No part of this manual may be photocopied or
reproduced in any form without prior written consent from The MathWorks, Inc.

FEDERAL ACQUISITION: This provision applies to all acquisitions of the Program and Documentation
by, for, or through the federal government of the United States. By accepting delivery of the Program
or Documentation, the government hereby agrees that this software or documentation qualifies as
commercial computer software or commercial computer software documentation as such terms are used
or defined in FAR 12.212, DFARS Part 227.72, and DFARS 252.227-7014. Accordingly, the terms and
conditions of this Agreement and only those rights specified in this Agreement, shall pertain to and govern
the use, modification, reproduction, release, performance, display, and disclosure of the Program and
Documentation by the federal government (or other entity acquiring for or through the federal government)
and shall supersede any conflicting contractual terms or conditions. If this License fails to meet the
government’s needs or is inconsistent in any respect with federal procurement law, the government agrees
to return the Program and Documentation, unused, to The MathWorks, Inc.

Trademarks

MATLAB and Simulink are registered trademarks of The MathWorks, Inc. See
www.mathworks.com/trademarks for a list of additional trademarks. Other product or brand
names may be trademarks or registered trademarks of their respective holders.

Patents

MathWorks products are protected by one or more U.S. patents. Please see
www.mathworks.com/patents for more information.

http://www.mathworks.com/trademarks
http://www.mathworks.com/patents

Revision History
March 2009 Online Only Revised for Version 5.3 (Release 2009a)
September 2009 Online Only Revised for Version 5.4 (Release 2009b)
March 2010 Online Only Revised for Version 5.5 (Release 2010a)
September 2010 Online Only Revised for Version 5.6 (Release 2010b)
April 2011 Online Only Revised for Version 5.7 (Release 2011a)
September 2011 Online Only Revised for Version 5.8 (Release 2011b)
March 2012 Online Only Revised for Version 5.9 (Release 2012a)
September 2012 Online Only Revised for Version 5.10 (Release 2012b)
March 2013 Online Only Revised for Version 5.11 (Release 2013a)

Contents

Getting Started with Model Link Products

1
Product Overview . 1-2
Polyspace Model Link SL . 1-2
Polyspace Model Link TL . 1-2

Install Polyspace Model Link Products 1-3

Code Verification Approach . 1-4

Verify Code from a Simple Model 1-6
Create Simulink Model and Generate Code 1-6
Run Polyspace Verification . 1-9
View Results in Polyspace Verification Environment 1-10
Trace Error to Simulink Model . 1-12
Specify Signal Ranges . 1-13
Verify Updated Model . 1-15

Configure Model for Code Verification

2
Overview of Model Configuration for Code Generation
and Verification . 2-2

Configure Embedded IDE Link Model for Code
Verification . 2-3

Recommended Polyspace Settings for Code
Verification . 2-5

Check Simulink Model Settings . 2-7

v

Specify Signal Ranges . 2-9
Specify Signal Range through Source Block Parameters . . 2-9
Specify Signal Range through Base Workspace 2-11

Annotate Blocks with Known Checks or Coding-Rule
Violations . 2-14

Code Annotation for Justifying Polyspace Checks 2-17

Configure Code Verification Options

3
Overview of Polyspace Configuration 3-2

Include Handwritten Code in Verification 3-3

Specify Client or Server Verification 3-5

Configure Data Range Settings . 3-6

Configure Verification of Model Reference Code 3-9

Specify Location of Results . 3-10

Check Coding Rules Compliance . 3-11

Configure Polyspace Verification Options 3-14

Configure Polyspace Project Properties 3-17

Create a Polyspace Configuration File Template 3-18

Specify Header Files for Target Compiler 3-21

vi Contents

Open Polyspace Project Manager Automatically 3-22

Remove Polyspace Options From Simulink Model 3-24

Main Generation for Model Verification 3-25

Polyspace Model Link SL Considerations 3-27
Overview . 3-27
Subsystems . 3-27
Default Options . 3-27
Data Range Specification . 3-28
Recommended Polyspace Options for Verifying Generated
Code . 3-29

Hardware Mapping Between Simulink and Polyspace 3-33

Polyspace Model Link TL Considerations 3-34
Overview . 3-34
Subsystems . 3-34
Default Options . 3-34
Data Range Specification . 3-35
Lookup Tables . 3-36
Code Generation Options . 3-36

Run Code Verification

4
Specify Type of Analysis to Perform 4-2

Run Verification with Polyspace Model Link SL
Software . 4-5

Run Verification with Polyspace Model Link TL
Software . 4-8

Monitor Verification Progress . 4-10
Client Verifications . 4-10
Server Verifications . 4-10

vii

Code Generation and Verification with Configured
Model . 4-12

MATLAB Functions For Polyspace Batch Runs 4-14

Archive Files for Polyspace Verification 4-15
Template File in MATLAB Installation

folder\polyspace\ . 4-15
Files Used in Model Folder . 4-15
Auto-Generated Files in Model Folder 4-16

Review Verification Results

5
ViewResults in Polyspace Verification Environment . . 5-2

Identify Errors in Simulink Models 5-5

Functions

6

viii Contents

1

Getting Started with Model
Link Products

• “Product Overview” on page 1-2

• “Install Polyspace Model Link Products” on page 1-3

• “Code Verification Approach” on page 1-4

• “Verify Code from a Simple Model” on page 1-6

1 Getting Started with Model Link Products

Product Overview

In this section...

“Polyspace® Model Link™ SL” on page 1-2

“Polyspace® Model Link™ TL” on page 1-2

Polyspace Model Link SL
Polyspace® Model Link™ SL extends Polyspace Client™ for C/C++ and
Polyspace Server™ for C/C++ with tools that let you trace Polyspace results
from generated C code directly to your Simulink® model. As a result, you can
identify parts of the model that do not generate code with run-time errors,
and fix design problems that cause run-time errors. With Polyspace Model
Link SL, you work in the Simulink environment to verify C code generated
by Embedded Coder® software. You can verify a mix of generated and
hand-written code before it is compiled.

Polyspace Model Link TL
Polyspace Model Link TL extends Polyspace Client for C/C++ and Polyspace
Server for C/C++ with tools that let you verify C code generated by
TargetLink® and trace Polyspace results from the generated C code to your
model. As a result, you can identify parts of the model that do not generate
code with run-time errors, and fix design problems that cause run-time
errors. With Polyspace Model Link TL software, you work in the Simulink
environment to verify C code generated by TargetLink. You can verify a mix
of generated and hand-written code before it is compiled.

1-2

Install Polyspace® Model Link Products

Install Polyspace Model Link Products
For MATLAB® versions R2011a and later:

1 Start MATLAB.

2 Change your working folder to:

Polyspace_Install\polyspace\toolbox\pslink\pslink

3 To install Polyspace Model Link products, in the Command Window, run:

pslinksetup('install')

To uninstall Polyspace Model Link products, in the Command Window, run:

pslinksetup('uninstall')

Alternatively:

1 Open a DOS command window.

2 Change your current folder to matlabroot\bin:

cd matlabroot\bin

matlabroot is the installation folder for your MATLAB software.

3 From matlabroot\bin, install Polyspace Model Link products:

matlab -r
Polyspace_Install\polyspace\toolbox\pslink\pslink\pslinksetup('install')

1-3

1 Getting Started with Model Link Products

Code Verification Approach
With Embedded Coder or dSPACE® TargetLink software, you can generate
code from models in the Simulink Model-Based Design environment. Using
Polyspace Model Link SL and Polyspace Model Link TL software, you can
apply Polyspace verification to the generated code within the Simulink
environment. The software detects run-time errors in the generated code and
helps you to locate and fix model faults.

Note The documentation describes steps for the Polyspace Model Link SL
product, but states differences between the Polyspace Model Link SL and
Polyspace Model Link TL products where relevant.

Use the following approach:

1 Configure your Simulink model and generate code. See “Overview of Model
Configuration for Code Generation and Verification” on page 2-2.

2 Configure Polyspace verification options. See “Overview of Polyspace
Configuration” on page 3-2

Note After generating code, you can run a verification without manual
configuration. By default, Polyspace automatically creates a project and
extracts required information from your model. However, you can also
customize your verification. See “Configure Polyspace Verification Options”
on page 3-14.

3 Run Polyspace verification. See:

• “Run Verification with Polyspace® Model Link™ SL Software” on page
4-5

• “Run Verification with Polyspace® Model Link™ TL Software” on page
4-8

4 View results, analyze errors, locate and fix model faults. See “View Results
in Polyspace Verification Environment” on page 5-2.

1-4

Code Verification Approach

The software allows direct navigation from a run-time error in the
generated code to the corresponding Simulink block or Stateflow® chart in
the Simulink model. See “Identify Errors in Simulink Models” on page 5-5.

1-5

1 Getting Started with Model Link Products

Verify Code from a Simple Model

In this section...

“Create Simulink Model and Generate Code” on page 1-6

“Run Polyspace Verification” on page 1-9

“View Results in Polyspace Verification Environment” on page 1-10

“Trace Error to Simulink Model” on page 1-12

“Specify Signal Ranges” on page 1-13

“Verify Updated Model” on page 1-15

Create Simulink Model and Generate Code
To create a simple Simulink model and generate code:

1 Open MATLAB. Then start Simulink software.

2 Construct the following model.

3 Select File > Save. Then name the model my_first_code.

4 Select Tools > Model Explorer. The Model Explorer opens.

5 From theModel Hierarchy tree, expand the node my_first_code.

1-6

Verify Code from a Simple Model

6 Select Configuration > Code Generation, which displays Code
Generation configuration parameters.

7 Select the General tab, and then set the System target file to ert.tlc
(Embedded Coder).

8 Select the Report tab.

9 Select Create code-generation report, and then select Code-to-model
navigation.

10 Select the Templates tab.

11 In the Custom templates section, clear the check box Generate an
example main program.

12 Select the Interface tab.

13 In the Code interface section, select the Suppress error status in
real-time model data structure check box.

1-7

1 Getting Started with Model Link Products

14 Click Apply in the lower-right corner of the window.

15 Select Configuration > Solver, which displays Solver configuration
parameters.

16 In the Solver options section, set the solver Type to Fixed-step. Then,
set the Solver to discrete (no continuous states).

17 Click Apply.

18 Select Configuration > Optimization, which displays Optimization
configuration parameters. Then:

• On the General tab, in the Data initialization section, select the
Remove root level I/O zero initialization check box.

• On the General tab, clear the Use memset to initialize floats and
doubles to 0.0 check box

• On the Signals and Parameters tab, in the Simulation and code
generation section, select the Inline parameters check box.

19 Click Apply.

20 To generate code, from the Simulink model window, select Code > C/C++
Code > Build Model.

21 Save your Simulink model.

1-8

Verify Code from a Simple Model

Run Polyspace Verification
To start the Polyspace verification:

1 From the Simulink model window, select Code > Polyspace > Polyspace
for Embedded Coder > Verify Generated Code.

The verification starts, and you see messages in the MATLAB Command
Window.

Starting Polyspace verification for Embedded Coder

Creating results folder results_my_first_code for system my_first_code

Parameters used for code verification:

System : my_first_code

Results Folder : C:\results_my_first_code

Additional Files : 0

Remote : 1

Verifier settings : PrjConfig

DRS input mode : DesignMinMax

DRS parameter mode : None

DRS output mode : None

Model Reference Depth : Current model only

Model by Model : 0

Creating results folder C:\results_my_first_code\my_first_code for system my_first_code

Writing DRS table in C:\results_my_first_code\my_first_code\my_first_code_drs.txt

Writing link data in C:\results_my_first_code\my_first_code\linksData.xml

Writing model version in C:\results_my_first_code\my_first_code\code_generator_used

Computing code verification options

2 Follow the progress of the verification in the MATLAB Command window.

Note Verification of this model takes about a minute. A 3,000 block model
will take approximately one hour to verify, or about 15 minutes for each 2,000
lines of generated code.

1-9

1 Getting Started with Model Link Products

View Results in Polyspace Verification Environment
When the verification is complete, you can view the results using the Results
Manager perspective of the Polyspace verification environment.

To view your results:

1 From the Simulink model window, select Code > Polyspace > Open
Results > For Generated Code.

After a few seconds, the Results Manager perspective of the Polyspace
verification environment opens.

2 On the Results Summary tab, select the orange check.

The Check Details pane shows information about the orange check, and
the Source pane shows the source code containing the orange check.

1-10

Verify Code from a Simple Model

This orange check shows a potential overflow issue when multiplying the
signals from the inports In1 and In2. Polyspace software assumes that
the signal values are full range, and the multiplication of the two signals
may result in an overflow.

1-11

1 Getting Started with Model Link Products

Trace Error to Simulink Model
To fix this overflow issue, you must return to the Simulink model.

To trace the error to your model:

1 Click the blue underlined link (<Root>/Product) immediately before the
check in the Source pane. The Simulink model opens, highlighting the
block with the error.

2 Examine the model. The highlighted block multiplies two full-range
signals, which could result in an overflow.

The verification has identified a potential bug. This could be a flaw in:

• Design — If the model should be robust for the full signal range, then
the issue is a design flaw. In this case, you must change the model to
accommodate the full signal range. For example, you could saturate the
output of the previous block, or bound the signal with a Switch block.

• Specifications — If the model is supposed to work for specific input
ranges, you can provide these ranges using block parameters or the base
workspace. The next verification will read these ranges from the model,
and the check will be green.

1-12

Verify Code from a Simple Model

Specify Signal Ranges
If you constrain the signals in your Simulink model to specified ranges,
Polyspace software automatically applies these constraints during verification
of the generated code. The OVFL check will then be green in the verification
results.

To specify signal ranges using source block parameters:

1 Double-click the In1 source block in your model. The Source Block
Parameters dialog box opens.

2 Select the Signal Attributes tab.

3 Set the Minimum value for the signal to -15.

4 Set the Maximum value for the signal to 15.

1-13

1 Getting Started with Model Link Products

5 Click OK.

6 Repeat steps 1–6 for the In2 block.

7 Save your model as my_first_code_bounded.

1-14

Verify Code from a Simple Model

Verify Updated Model
After changing the model, you must regenerate code and run verification
again.

To regenerate code and rerun the verification:

1 From the Simulink model, select Code > C/C++ Code > Build Model.

The software generates code for the updated model.

2 Select Code > Polyspace > Polyspace for Embedded Coder > Verify
Generated Code.

The software verifies the generated code.

3 Select Code > Polyspace > Open Results.

Verification results open in the Polyspace verification environment.

4 In the Results Manager perspective, select the Results Explorer tab.

1-15

1 Getting Started with Model Link Products

The OVFL check is now green. Polyspace verification shows that no
run-time errors are present in the model.

1-16

2

Configure Model for Code
Verification

• “Overview of Model Configuration for Code Generation and Verification”
on page 2-2

• “Configure Embedded IDE Link Model for Code Verification” on page 2-3

• “Recommended Polyspace Settings for Code Verification” on page 2-5

• “Check Simulink Model Settings” on page 2-7

• “Specify Signal Ranges” on page 2-9

• “Annotate Blocks with Known Checks or Coding-Rule Violations” on page
2-14

• “Code Annotation for Justifying Polyspace Checks” on page 2-17

2 Configure Model for Code Verification

Overview of Model Configuration for Code Generation
and Verification

To facilitate Polyspace code verification and the review of results:

• There are certain settings that you should apply to your model before
generating code. See “Recommended Polyspace Settings for Code
Verification” on page 2-5.

• Polyspace Model Link SL software allows you to check your model
configuration before starting a verification. See “Check Simulink Model
Settings” on page 2-7

• You can constrain signals in your model to lie within specified ranges. See
“Specify Signal Ranges” on page 2-9.

• You can highlight blocks that you know contain checks or coding rule
violations. See “Annotate Blocks with Known Checks or Coding-Rule
Violations” on page 2-14.

2-2

Configure Embedded IDE Link™ Model for Code Verification

Configure Embedded IDE Link Model for Code Verification
To configure a Simulink model for code generation and verification:

1 Open Model Explorer.

2 From the Model Hierarchy tree, expand the model node.

3 Select Configuration > Code Generation, which displays Code
Generation configuration parameters.

4 Select the General tab, and then set the System target file to ert.tlc
(Embedded Coder).

5 In the Report tab, select:

• Create code-generation report

• Code-to-model navigation.

6 In the Templates tab, clear Generate an example main program.

7 In the Interface tab, select Suppress error status in real-time model
data structure.

8 Click Apply.

9 Select Configuration > Solver, which displays Solver configuration
parameters.

10 In the Solver options section, set:

• Type to Fixed-step.

• Solver to discrete (no continuous states).

11 Click Apply.

12 Select Configuration > Optimization, which displays Optimization
configuration parameters. Then:

• On the General tab, in the Data initialization section, select the
Remove root level I/O zero initialization check box.

2-3

2 Configure Model for Code Verification

• On the General tab, clear the Use memset to initialize floats and
doubles to 0.0 check box

• On the Signals and Parameters tab, in the Simulation and code
generation section, select the Inline parameters check box.

13 Save your model.

2-4

Recommended Polyspace® Settings for Code Verification

Recommended Polyspace Settings for Code Verification
For Polyspace verification, you should configure your model with the following
settings before generating code.

Parameter Recommended
value for Polyspace
verification

How you specify value in
Configuration Parameters
dialog box

If you do
not use
recommended
value,
Polyspace
Model Link SL
generates ...

InitFltsAndDblsTo
Zero

'on' Select check box
Optimization > Use
memset to initialize floats
and doubles to 0.0

Warning

InlineParams 'on' Select check box
Optimization > Signals
and Parameters > Inline
parameters

Warning

MatFileLogging 'off' Clear check box Code
Generation > Interface >
MAT-file logging

Warning

Solver 'FixedStepDiscrete' Select discrete (no
continuous states) from
Solver > Solver drop-down
list

Warning

2-5

2 Configure Model for Code Verification

Parameter Recommended
value for Polyspace
verification

How you specify value in
Configuration Parameters
dialog box

If you do
not use
recommended
value,
Polyspace
Model Link SL
generates ...

SystemTargetFile 'ert.tlc' Specify ert.tlc (for
Embedded Coder) in Code
Generation > System
target file

Error

ZeroExternalMemory
AtStartup

'off' when
Configuration
Parameters >
Polyspace Model
Link > Data Range
Management >
Output is Global
assert

Clear check box
Optimization > Remove
root level I/O zero
initialization

Warning

2-6

Check Simulink® Model Settings

Check Simulink Model Settings
With Polyspace Model Link SL software, you can check your model settings
before starting a verification:

1 From the Simulink model window, select Code > Polyspace > Options.
The Configuration Parameters dialog box opens, displaying the Polyspace
Model Link pane.

2 Click Check configuration. If your model settings are not optimal for
Polyspace verification, the software displays warning messages with
recommendations.

For more information on model settings, see “Recommended Polyspace
Settings for Code Verification” on page 2-5.

2-7

2 Configure Model for Code Verification

Note If you alter your model settings, build the model again to generate
fresh code. If the generated code version does not match your model version,
the software produces warnings when you run a verification.

2-8

Specify Signal Ranges

Specify Signal Ranges
If you constrain signals in your Simulink model to lie within specified ranges,
Polyspace software automatically applies these constraints during verification
of the generated code. This can reduce the number of orange checks in your
verification results.

You can specify a range for a model signal by:

• Applying constraints through source block parameters. See “Specify Signal
Range through Source Block Parameters” on page 2-9.

• Constraining signals through the base workspace. See “Specify Signal
Range through Base Workspace” on page 2-11.

Note You can also manually define data ranges using the DRS feature in
the Polyspace verification environment. If you manually define a DRS file,
the software automatically appends any signal range information from your
model to the DRS file. However, manually defined DRS information overrides
information generated from the model for all variables.

Specify Signal Range through Source Block
Parameters
You can specify a signal range by applying constraints to source block
parameters.

Specifying a range through source block parameters is often easier than
creating signal objects in the base workspace, but must be repeated for each
source block. For information on using the base workspace, see “Specify
Signal Range through Base Workspace” on page 2-11.

To specify a signal range using source block parameters:

1 Double-click the source block in your model. The Source Block Parameters
dialog box opens.

2 Select the Signal Attributes tab.

2-9

2 Configure Model for Code Verification

3 Specify the Minimum value for the signal, for example, -15.

4 Specify the Maximum value for the signal, for example, 15.

5 Click OK.

2-10

Specify Signal Ranges

Specify Signal Range through Base Workspace
You can specify a signal range by creating signal objects in the MATLAB
workspace. This information is used to initialize each global variable to the
range of valid values, as defined by the min-max information in the workspace.

Note You can also specify a signal range by applying constraints to
individual source block parameters. This method can be easier than creating
signal objects in the base workspace, but must be repeated for each source
block. For more information, see “Specify Signal Range through Source Block
Parameters” on page 2-9.

To specify an input signal range through the base workspace:

1 Configure the signal to use, for example, the ExportedGlobal storage class:

a Right-click the signal. From the context menu, select Properties. The
Signal Properties dialog box opens.

b In the Signal name field, enter a name, for example, my_entry1.

c Select the Code Generation tab.

d From the Package drop-down menu, select Simulink.

e In the Storage class drop-down menu, select ExportedGlobal.

2-11

2 Configure Model for Code Verification

f Click OK, which applies your changes and closes the dialog box.

Note For information about supported storage classes, see “Data Range
Specification” on page 3-28.

2 Using Model Explorer, specify the signal range:

a Select Tools > Model Explorer to open Model Explorer.

b From theModel Hierarchy tree, select Base Workspace.

c Click the Add Simulink Signal button to create a signal. Rename this
signal, for example, my_entry1.

d Set theMinimum value for the signal, for example, to -15.

e Set theMaximum value for the signal, for example, to 15.

2-12

Specify Signal Ranges

f From the Storage class drop-down list, select ExportedGlobal.

g Click Apply.

2-13

2 Configure Model for Code Verification

Annotate Blocks with Known Checks or Coding-Rule
Violations

You can annotate individual blocks in your Simulink model to inform
Polyspace software of known run-time checks or coding-rule violations.
This allows you to highlight and categorize checks identified in previous
verifications, so you can focus on new checks when reviewing results.

The Polyspace Results Manager perspective displays the information that you
provide with block annotations, and marks the checks as Justified.

To annotate a block:

1 In the Simulink model window, right-click the block you want to annotate.

2 From the context menu, select Polyspace Annotations > Edit. The
Polyspace Annotation dialog box opens.

3 From the Annotation type drop-down list, select one of the following:

• Check — To indicate a run-time error

• MISRA-C— To indicate a MISRA C® coding rule violation

2-14

Annotate Blocks with Known Checks or Coding-Rule Violations

• MISRA-C++— To indicate a MISRA® C++ coding rule violation

• JSF — To indicate a JSF® C++ coding rule violation

4 If you want to highlight only one check, select Only 1 check and the
relevant run-time check (or coding rule) from the Select RTE check kind
(or Select MISRA rule, Select MISRA C++ rule, or Select JSF rule)
drop-down list.

If you want to highlight a list of checks, clear Only 1 check. In the Enter
a list of checks (or Enter a list of rule numbers) field, specify the
run-time checks or MISRA rules that you want to highlight.

5 Select a Status to describe how you intend to address the issue:

• Fix

• Improve

• Investigate

• Justify with annotations

• No Action Planned

• Other

• Restart with different options

• Undecided

6 Select a Classification to describe the severity of the issue:

• High

• Medium

• Low

• Not a defect

7 In the Comment field, enter additional information about the check.

8 Click OK. The software adds the Polyspace annotation is to the block.

2-15

2 Configure Model for Code Verification

2-16

Code Annotation for Justifying Polyspace Checks

Code Annotation for Justifying Polyspace Checks
With the Polyspace Model Link SL product you can apply Polyspace
verification to Embedded Coder generated code. The software detects run-time
errors in the generated code and helps you to locate and fix model faults.

Polyspace might highlight overflows for certain operations that are legitimate
because of the way Embedded Coder implements these operations. Consider
the following model and the corresponding generated code.

32 /* Sum: '<Root>/Sum' incorporates:

33 * Inport: '<Root>/In1'

34 * Inport: '<Root>/In2'

35 */

36 qY_0 = sat_add_U.In1 + sat_add_U.In2;

37 if ((sat_add_U.In1 < 0) && ((sat_add_U.In2 < 0) && (qY_0 >= 0))) {

38 qY_0 = MIN_int32_T;

39 } else {

40 if ((sat_add_U.In1 > 0) && ((sat_add_U.In2 > 0) && (qY_0 <= 0))) {

41 qY_0 = MAX_int32_T;

42 }

43 }

Embedded Coder software recognizes that the largest built-in data type
is 32-bit. It is not possible to saturate the results of the additions and
subtractions using MIN_INT32 and MAX_INT32, and a bigger single-word
integer data type. Instead the software detects the results overflow and the
direction of the overflow, and saturates the result.

2-17

2 Configure Model for Code Verification

If you do not provide justification for the addition operator on line 36, a
Polyspace verification generates an orange check that indicates a potential
overflow. The verification does not take into account the saturation function
of lines 37 to 43. In addition, the trace-back functionality of Polyspace Model
Link SL does not identify the reason for the orange check.

To justify overflows from operators that are legitimate, on the Configuration
Parameters > Code Generation > Comments pane:

• Under Overall control, select the Include comments check box.

• Under Auto generate comments, select the Operator annotations
check box.

When you generate code, the Embedded Coder software annotates the code
with comments for Polyspace. For example:

32 /* Sum: '<Root>/Sum' incorporates:
33 * Inport: '<Root>/In1'
34 * Inport: '<Root>/In2'
35 */
36 qY_0 = sat_add_U.In1 +/*MW:OvOk*/ sat_add_U.In2;

When you run a verification using Polyspace Model Link SL, the Polyspace
software uses the annotations to justify the operator-related orange checks
and assigns the Not a defect classification to the checks.

2-18

3

Configure Code Verification
Options

• “Overview of Polyspace Configuration” on page 3-2

• “Include Handwritten Code in Verification” on page 3-3

• “Specify Client or Server Verification” on page 3-5

• “Configure Data Range Settings” on page 3-6

• “Configure Verification of Model Reference Code” on page 3-9

• “Specify Location of Results” on page 3-10

• “Check Coding Rules Compliance” on page 3-11

• “Configure Polyspace Verification Options” on page 3-14

• “Configure Polyspace Project Properties” on page 3-17

• “Create a Polyspace Configuration File Template” on page 3-18

• “Specify Header Files for Target Compiler” on page 3-21

• “Open Polyspace Project Manager Automatically” on page 3-22

• “Remove Polyspace Options From Simulink Model” on page 3-24

• “Main Generation for Model Verification” on page 3-25

• “Polyspace® Model Link™ SL Considerations” on page 3-27

• “Polyspace® Model Link™ TL Considerations” on page 3-34

3 Configure Code Verification Options

Overview of Polyspace Configuration
You do not have to manually create a Polyspace project or specify Polyspace
options before running a verification for your generated code. By default,
when you start a verification, Polyspace automatically creates a project and
extracts the required information from your model. However, you can modify
or specify additional options for your verification:

• You may incorporate separately created code within the code generated
from your Simulink model. See “Include Handwritten Code in Verification”
on page 3-3.

• By default, the Polyspace verification is contextual and treats tunable
parameters as constants. You can specify a verification that considers
robustness, including tunable parameters that lie within a range of values.
See “Configure Data Range Settings” on page 3-6.

• You may customize the options for your verification. For example, to
specify the target environment or adjust precision settings. See “Configure
Polyspace Verification Options” on page 3-14 and “Recommended Polyspace
Options for Verifying Generated Code” on page 3-29.

• You may create specific configurations for batch runs. See “Create a
Polyspace Configuration File Template” on page 3-18.

• If you want to verify code generated for a 16-bit target processor, you must
specify header files for your 16-bit compiler. See “Specify Header Files
for Target Compiler” on page 3-21.

3-2

Include Handwritten Code in Verification

Include Handwritten Code in Verification
Files such as S-function wrappers are, by default, not part of the Polyspace
verification. You can add these files manually. Steps for Polyspace Model
Link SL are shown here.

To add a file to a verification:

1 From the Simulink model window, select Code > Polyspace > Options.
The Configuration Parameters dialog box opens, displaying the Polyspace
Model Link pane.

2 Select the Enable additional file list check box. Then click Select files.
The Files Selector dialog box opens.

3 Click Add. The Select files to add dialog box opens.

4 Use the Select files to add dialog box to:

• Navigate to the relevant folder

• Add the required files.

The software displays the selected files as a list under Additional files
to analyze.

3-3

3 Configure Code Verification Options

Note To remove a file from the list, select the file and click Remove. To
remove all files from the list, click Remove all.

5 Click OK.

3-4

Specify Client or Server Verification

Specify Client or Server Verification
By default, the software runs the code verification on your Polyspace server.
To specify a client verification:

1 From the Simulink model window, select Code > Polyspace > Options.
The Configuration Parameters dialog box opens, displaying the Polyspace
Model Link pane.

2 Clear the Send to Polyspace server check box.

3 Click Apply.

3-5

3 Configure Code Verification Options

Configure Data Range Settings
There are two approaches to code verification, which can produce results that
are slightly different:

• Contextual Verification— Prove code works under predefined working
conditions. This limits the scope of the verification to specific variable
ranges, and verifies the code within these ranges.

• Robustness Verification — Prove code works under all conditions,
including “abnormal” conditions for which the code was not designed. This
can be thought of as “worst case” verification.

For more information, see:

• “Choose Robustness or Contextual Verification”.

• Data Range Specification — Model Link SL

• Data Range Specification — Model Link TL

Note The software supports data range management only with Simulink
Version 7.4 (R2009b) or later.

Both Polyspace Model Link SL and Polyspace Model Link TL allow you to
run either contextual or robustness verification by the way you specify data
ranges for model inputs, outputs, and tunable parameters within the model.

3-6

Configure Data Range Settings

To specify data range settings for your model:

1 From the Simulink model window, select Code > Polyspace > Options.
The Configuration Parameters dialog box opens, displaying the Polyspace
Model Link pane.

2 In the Data Range Management section, specify how you want the
verification to treat:

a Input — Select one of the following:

• Use specified minimum and maximum values (Default) — Apply
data ranges defined in blocks or base workspace to increase the
precision of the verification. See “Specify Signal Ranges” on page 2-9.

• Unbounded inputs — Assume all inputs are full-range values
(min...max)

b Tunable parameters — Select one of the following:

• Use calibration data (Default) — Use value of constant parameter
specified in code.

• Use specified minimum and maximum values— Use a parameter
range defined in the block or base workspace. See “Specify Signal
Ranges” on page 2-9. If no range is defined, use full range (min...max).

c Output — Select one of the following:

• No verification (Default) — No assertion ranges on outputs.

3-7

3 Configure Code Verification Options

• Verify outputs are within minimum and maximum values— Use
assertion ranges on outputs.

Note This mode is incompatible with the Automatic Orange Tester.

In general, you should use the following combinations:

• To maximize verification precision, select Use specified minimum and
maximum values for Input and Tunable parameters.

• To verify the extreme cases of program execution, select Unbounded inputs
for Input and Use calibration data for Tunable parameters.

3-8

Configure Verification of Model Reference Code

Configure Verification of Model Reference Code
From the Polyspace Model Link pane, you can specify the verification of
generated code with respect to model reference hierarchy levels:

• Model reference verification depth— From the drop-down list, select
one of the following:

- Current model only — Default. The software verifies code from the
top level only. The software creates stubs to represent code from lower
hierarchy levels.

- 1— The software verifies code from the top level and the next level. For
subsequent hierarchy levels, the software creates stubs.

- 2 — The software verifies code from the top level and the next two
hierarchy levels. For subsequent hierarchy levels, the software creates
stubs.

- 3 — The software verifies code from the top level and the next three
hierarchy levels. For subsequent hierarchy levels, the software creates
stubs.

- All — The software verifies code from the top level and all lower
hierarchy levels.

• Model by model verification — Select this check box if you want the
software to verify code from each model separately.

Note The same configuration settings apply to all referenced models within
a top model. It does not matter whether you open the Polyspace Model
Link pane from the top model window (Code > Polyspace > Options) or
through the right-click context menu of a particular Model block within
the top model. However, you can run verifications for code generated from
specific Model blocks. See “Run Verification with Polyspace® Model Link™ SL
Software” on page 4-5.

3-9

3 Configure Code Verification Options

Specify Location of Results
With Polyspace Model Link SL, you can specify a location for the results of
your verification:

1 From the Simulink model window, select Code > Polyspace > Options.
The Configuration Parameters dialog box opens with the Polyspace Model
Link pane displayed.

2 In the Output folder field, specify the full path for your
results folder. By default, the software stores results in
C:\PolySpace_Results\results_model_name.

3 If you want to avoid overwriting results from previous verifications, select
the Make output folder name unique by adding a suffix check box.
Instead of overwriting an existing folder, the software specifies a new
location for the results folder by appending a unique number to the folder
name.

3-10

Check Coding Rules Compliance

Check Coding Rules Compliance
Polyspace Model Link SL software allows you to check compliance with
MISRA C and MISRA AC AGC coding rules directly from your Simulink
model.

You can choose to run coding rules checking either with or without full code
verification.

To configure coding rules checking:

1 From the Simulink model window, select Code > Polyspace > Options.
The Polyspace Model Link pane opens.

3-11

3 Configure Code Verification Options

2 In the Verification settings from drop-down menu, select the type of
analysis you want to perform.

Depending on the type of code generated, different verification settings are
available. The following tables describe the different Verification settings.

C Code Verification Settings

Verification Setting Description

Project configuration Run code verification using the
options specified in the Project
configuration.

Project configuration and
MISRA AC AGC rule checking

Check compliance with the
MISRA AC-AGC rule set, and
run code verification using the
options specified in the Project
configuration.

Project configuration and
MISRA rule checking

Check compliance with all
MISRA C coding rules, and
run code verification using the
options specified in the Project
configuration.

MISRA AC AGC rule checking Check compliance with the MISRA
AC-AGC rule set. Verification stops
after rules checking.

MISRA rule checking Check compliance with all MISRA
C coding rules. Verification stops
after rules checking.

3-12

Check Coding Rules Compliance

C++ Code Verification Settings

Verification Setting Description

Project configuration Run code verification using the
options specified in the Project
configuration.

Project configuration and
MISRA C++ rule checking

Check compliance with the
MISRA C++ coding rules, and
run code verification using the
options specified in the Project
configuration.

Project configuration and JSF
C++ rule checking

Check compliance with all
JSF C++ coding rules, and
run code verification using the
options specified in the Project
configuration.

MISRA C++ rule checking Check compliance with the MISRA
C++ coding rules. Verification
stops after rules checking.

JSF C++ rule checking Check compliance with all JSF C++
coding rules. Verification stops
after rules checking.

3 Click Apply to save your settings.

3-13

3 Configure Code Verification Options

Configure Polyspace Verification Options
Polyspace Model Link software supports a simplified version of the Polyspace
Project Manager, which allows you to customize the options and project
properties for your verification. For example, you can specify the target
processor type, target operating system, and compilation flags.

To open the Configuration pane of the Project Manager:

1 From the Simulink model window, select Code > Polyspace > Options.
The Polyspace Model Link pane opens.

2 Click Configure. The Project Manager opens, displaying the Machine
Configuration pane.

3-14

Configure Polyspace® Verification Options

The first time you open the configuration, the software sets the following
options:

• Target operating system (-OS-target) – Set to no-predefined-OS

• Use result folder (-results-dir) – Set to results_modelname

The software also configures other options automatically, but the settings
depend on the code generator used. See “Polyspace® Model Link™
SL Considerations” on page 3-27 and “Polyspace® Model Link™ TL
Considerations” on page 3-34.

3 Set other options required by your application.

For recommended options for verifying generated code, see “Recommended
Polyspace Options for Verifying Generated Code” on page 3-29.

3-15

3 Configure Code Verification Options

For descriptions of all options, see “Analysis Options for C Code” or
“Analysis Options for C++ Code”.

3-16

Configure Polyspace® Project Properties

Configure Polyspace Project Properties
You can specify project properties, for example, your project name, through
the Polyspace Project - Properties dialog box. To open this dialog box,

1 From the Simulink model window, select Code > Polyspace > Options.
The Polyspace Model Link pane opens.

2 Click Configure. The Project Manager opens.

3 On the Project Manager toolbar, click the Project properties icon .

3-17

3 Configure Code Verification Options

Create a Polyspace Configuration File Template
During a batch run, you may want use different configurations for verification.
The software provides the command PolyspaceSetTemplateCFGFile, which
allows you to apply a configuration defined by a configuration file template.
See “MATLAB Functions For Polyspace Batch Runs” on page 4-14.

To create a configuration file template:

1 In the Simulink model window, select Code > Polyspace > Options. The
Polyspace Model Link pane opens.

2 Click Configure. The Project Manager opens, displaying the
Configuration pane. Use this pane to customize the target and cross
compiler.

3 From the Configuration tree, expand the Target & Compiler node.

4 In the Target Environment section, use the Target processor type
option to define the size of data types.

a From the drop-down list, select mcpu...(Advanced). The Generic target
options dialog box opens.

3-18

Create a Polyspace® Configuration File Template

Use this dialog box to create a new target and specify data types for the
target. Then click Save.

5 From the Configuration tree, select Target & Compiler > Macros. Use
the Preprocessor definitions section to define preprocessor macros for
your cross-compiler.

To add a macro, in the Macros table, click the + button. In the new line,
enter the required text.

To remove a macro, select the macro and click the - button.

Note If you use the LCC cross-compiler, then you must specify the
MATLAB_MEX_FILE macro.

6 Save your changes and close the Project Manager.

3-19

3 Configure Code Verification Options

7 Make a copy of the updated project configuration file, for example,
my_first_code_polyspace.cfg.

8 Rename the copy, for example, my_cross_compiler.cfg. This is your new
configuration file template.

To make a template the configuration for verification, run the
PolyspaceSetTemplateCFGFile command in the MATLAB Command
Window. For example:

PolyspaceSetTemplateCFGFile ('C:\Work\my_cross_compiler.cfg')

3-20

Specify Header Files for Target Compiler

Specify Header Files for Target Compiler
If you want to verify code generated for a 16-bit target processor, you must
specify header files for your 16-bit compiler. The software automatically
identifies the compiler from the Simulink model. If the compiler is 16-bit and
you do not specify the relevant header files, the software produces an error
when you try to run a verification.

Note For a 32-bit or 64-bit target processor, the software automatically
specifies the default header file.

To specify header file folders (or header files) for your compiler:

1 Open the Polyspace Configuration pane. From the Simulink model
window, select Code > Polyspace > Options. The Polyspace Model
Link pane opens.

2 Click Configure. The Project Manager opens, displaying the
Configuration pane.

3 From the Configuration tree, expand the Target & Compiler node.

4 Select Target & Compiler > Environment Settings.

5 In the Include folders (or Include) section, specify a folder (or header
file) path by doing one of the following:

• Click the + button. Then, in the text field, enter the folder (or file) path.

• Click the folder button and use the Open file dialog box to navigate to
the required folder (or file).

You can remove an item from the displayed list by selecting the item
and then clicking -.

3-21

3 Configure Code Verification Options

Open Polyspace Project Manager Automatically
You can configure the software to automatically open the Polyspace Project
Manager when you launch a verification. This allows you to monitor the
progress of your verification from the Project Manager. When verification is
complete, you can switch to the Results Manager perspective to review the
results.

To configure the Project Manager to open automatically:

1 From the model window, select Code > Polyspace > Options.

The Polyspace Model Link pane opens.

3-22

Open Polyspace® Project Manager Automatically

2 In the Verification progress and results review section, select Open
Polyspace Project Manager and Results Manager.

3 Click Apply to save your settings.

3-23

3 Configure Code Verification Options

Remove Polyspace Options From Simulink Model
You can remove Polyspace configuration information from your Simulink
model.

For a top model:

1 Select Code > Polyspace > Remove Options from Current
Configuration.

2 Save the model.

For a Model block or subsystem:

1 Right-click the Model block or subsystem.

2 From the context menu, select Remove Options from Current
Configuration.

3 Save the model.

3-24

Main Generation for Model Verification

Main Generation for Model Verification
When you run a verification using either Polyspace Model Link SL or
Polyspace Model Link TL, the software automatically reads the following
information from the model:

• initialize() functions

• terminate() functions

• step() functions

• List of parameter variables

• List of input variables

The software then uses this information to generate a main function that:

1 Initializes parameters using the Polyspace option
-variables-written-before-loop.

2 Calls initialization functions using the option
-functions-called-before-loop.

3 Initializes inputs using the option -variables-written-in-loop.

4 Calls the step function using the option -functions-called-in-loop.

5 Calls the terminate function using the option
-functions-called-after-loop.

If the codeInfo for the model does not contain the names of the inputs, the
software considers all variables as entries, except for parameters and outputs.

For C++ code that is generated with Embedded Coder, the initialize(),
step(), and terminate() functions are either class methods or have global
scope. These different scopes contain the associated variables.

• For class methods in the generated code, the variables that are written
before and in the loop refer to the class members.

• For functions with global scope, the associated variables are also in the
global scope.

3-25

3 Configure Code Verification Options

main for Generated Code

The following example shows the main generator options that the software
uses to generate the main function for code generated from a Simulink model.

init parameters \\ -variables-written-before-loop

init_fct() \\ -functions-called-before-loop

while(1){ \\ start main loop

init inputs \\ -variables-written-in-loop

step_fct() \\ -functions-called-in-loop

}

terminate_fct() \\ -functions-called-after-loop

3-26

Polyspace® Model Link™ SL Considerations

Polyspace Model Link SL Considerations

In this section...

“Overview” on page 3-27

“Subsystems” on page 3-27

“Default Options” on page 3-27

“Data Range Specification” on page 3-28

“Recommended Polyspace Options for Verifying Generated Code” on page
3-29

“Hardware Mapping Between Simulink and Polyspace” on page 3-33

Overview
The Polyspace Model Link SL product has been tested with Embedded Coder
software. For more information, see “Software Installation”.

Subsystems
A dialog will be presented after clicking on the Polyspace for Embedded Coder
block if multiple subsystems are present in a diagram. Simply select the
subsystem to analyze from the list. The subsystem list is generated from the
directory structure from the code that has been generated.

Default Options
When using the Polyspace Model Link SL product, the software sets the
following verification options by default:

-sources path_to_source_code
-desktop
-D PST_ERRNO
-D main=main_rtwec
-I matlabroot\polyspace\include
-I matlabroot\extern\include
-I matlabroot\rtw\c\libsrc
-I matlabroot\simulink\include
-I matlabroot\sys\lcc\include

3-27

3 Configure Code Verification Options

-OS-target no-predefined-OS
-results-dir results

Note matlabroot is the MATLAB installation folder.

Data Range Specification
You can constrain inputs, parameters, and outputs to lie within specified data
ranges. See “Configure Data Range Settings” on page 3-6.

The software automatically creates a Polyspace Data Range Specification
(DRS) file using information from the MATLAB workspace and block
parameters.

You can also manually define a DRS file using the Project Manager
perspective of the Polyspace verification environment. If you define a DRS
file, the software appends the automatically generated information to the DRS
file you create. Manually defined DRS information overrides automatically
generated information for all variables.

The software supports the automatic generation of data range specifications
for the following kinds of generated code:

• Code from standalone models

• Code from configured function prototypes

• Reusable code

• Code generated from referenced models and submodels

The software supports the automatic generation of data range specifications
for only the following signal and parameter storage classes:

• SimulinkGlobal

• ExportedGlobal

• Struct (Custom)

3-28

Polyspace® Model Link™ SL Considerations

Recommended Polyspace Options for Verifying
Generated Code
The Polyspace Model Link SL software automatically specifies values for the
following verification options:

• -main-generator

• -functions-called-in-loop

• -functions-called-before-loop

• -functions-called-after-loop

• -variables-written-in-loop

• -variables-written-before-loop

In addition, for the option -server, the software uses the value specified
in the Send to Polyspace server check box on the Polyspace Model
Link pane. These values override the corresponding option values in the
Configuration pane of the Project Manager.

You can specify other verification options for your Polyspace Project through
the Polyspace Configuration pane. To open this pane:

1 In the Simulink model window, select Code > Polyspace > Options .
The Polyspace Model Link pane opens.

2 Click Configure. The Project Manager opens, displaying the Polyspace
Configuration pane.

The following table describes options that you should specify in your Polyspace
project before verifying code generated by Embedded Coder software.

3-29

3 Configure Code Verification Options

Option Recommended Value Comments

Target & Compiler

-D See Comments Defines macro compiler flags used during
compilation.

Use one -D for each line of the Embedded
Coder generated defines.txt file.

Polyspace Model Link SL does not do this
by default.

-OS-target Visual Specifies the operating system target for
Polyspace stubs.

This information allows the verification
to use system definitions during
preprocessing to analyze the included
files.

-target i386 Specifies the target processor type. This
allows the verification to consider the
size of fundamental data types and the
endianess of the target machine.

You can configure and specify generic
targets. For more information, see “Target
Processor Configuration”.

-dos Selected You must select this option if the contents
of the include or source directory comes
from a DOS or Windows file system. The
option allows the verification to deal with
upper/lower case sensitivity and control
characters issues. Concerned files are:

• Header files – All include folders
specified (-I option)

• Source files – All source files selected
for the verification (-sources option)

3-30

Polyspace® Model Link™ SL Considerations

Option Recommended Value Comments

Verification Assumptions

-allow-negative-operand-in-shiftSelected Allows a shift operation on a negative
number.According to the ANSI® standard,
such a shift operation on a negative
number is illegal. For example, -2 << 2
If you select this option, Polyspace
considers the operation to be valid. For
the given example, -2 << 2 = -8

-ignore-float-roundingSelected Specifies how the verification rounds
floats.

If this option is not selected, the
verification rounds floats according to the
IEEE® 754 standard – simple precision on
32-bits targets and double precision on
targets that define double as 64-bits.

When you select this option, the
verification performs exact computation.

Selecting this option can lead to results
that differ from "real life," depending on
the actual compiler and target. Some
paths may be reachable (or not reachable)
for the verification while they are not
reachable (or are reachable) for the actual
compiler and target.

However, this option reduces the number
of unproven checks caused by float
approximation.

3-31

3 Configure Code Verification Options

Option Recommended Value Comments

Precision

-O 2 Specifies the precision level for the
verification.

Higher precision levels provide higher
selectivity at the expense of longer
verification time.

Begin with the lowest precision level.
You can then address red errors and
gray code before rerunning the Polyspace
verification using higher precision levels.

Benefits:

A higher precision level contributes to a
higher selectivity rate, making results
review more efficient and hence making
bugs in the code easier to isolate.

The precision level specifies the algorithms
used to model the program state space
during verification:

• -O0 corresponds to static interval
verification.

• -O1 corresponds to complex polyhedron
model of domain values.

• -O2 corresponds to more complex
algorithms to closely model domain
values (a mixed approach with integer
lattices and complex polyhedrons).

• -O3 is suitable only for units smaller
than 1,000 lines of code. For such code,
selectivity may reach as high as 98%,
but verification may take up to an hour
per 1,000 lines of code.

3-32

Polyspace® Model Link™ SL Considerations

Option Recommended Value Comments

-to C source compliance
checking – For C code,
when checking coding rule
compliance only.

C++ source compliance
checking – For C++ code,
when checking coding rule
compliance only.

pass0 – When verifying
code for the first time.

pass4 – When performing
subsequent verifications
of code.

Specifies the phase after which the
verification stops. Each verification phase
improves the selectivity of your results,
but increases the overall verification time.

Improved selectivity can make results
review more efficient, and hence make
bugs in the code easier to isolate.

Begin by running -to pass0 (Software
Safety Analysis level 0) You can then
address red errors and gray code before
relaunching verification using higher
integration levels.

Hardware Mapping Between Simulink and Polyspace
The software automatically imports target word lengths and byte ordering
(endianess) from Simulink model hardware configuration settings. The
software maps Device vendor and Device type settings on the Simulink
Configuration Parameters > Hardware Implementation pane to
Target processor type settings on the Polyspace Configuration pane.

Note The software creates a generic target for the verification.

3-33

3 Configure Code Verification Options

Polyspace Model Link TL Considerations

In this section...

“Overview” on page 3-34

“Subsystems” on page 3-34

“Default Options” on page 3-34

“Data Range Specification” on page 3-35

“Lookup Tables” on page 3-36

“Code Generation Options” on page 3-36

Overview
The Polyspace Model Link TL product has been tested with specific releases
of the dSPACE Data Dictionary version and TargetLink Code Generator. For
more information, see “Polyspace Plug-In Requirements”.

As the Polyspace Model Link TL product extracts information from the
dSPACE Data Dictionary, remember to regenerate the code before performing
a Polyspace verification.

Subsystems
A dialog will be presented after clicking on the Polyspace for TargetLink
block if multiple subsystems are present in a diagram. Simply select the
subsystem to analyze from the list.

Default Options
The following default options are set by the tool:

-I path to source code
-desktop
-D PST_ERRNO
-I dspaceroot\matlab\TL\SimFiles\Generic
-I dspaceroot\matlab\TL\srcfiles\Generic
-I dspaceroot/matlab\TL\srcfiles\i86\LCC

3-34

Polyspace® Model Link™ TL Considerations

-I matlabroot\polyspace\include
-I matlabroot\extern\include
-I matlabroot\rtw\c\libsrc
-I matlabroot\simulink\include
-I matlabroot\sys\lcc\include

Note dspaceroot and matlabroot are the dSPACE and MATLAB tool
installation directories respectively.

Data Range Specification
You can constrain inputs, parameters, and outputs to lie within specified data
ranges. See “Configure Data Range Settings” on page 3-6.

The software automatically creates a Polyspace Data Range Specification
(DRS) file using the dSPACE Data Dictionary for each global variable. The
DRS information is used to initialize each global variable to the range of
valid values as defined by the min-max information in the data dictionary.
This allows Polyspace software to model every value that is legal for the
system during verification. Carefully defining the min-max information in the
model allows the verification to be more precise, because only the range of
real values is analyzed.

Note Boolean types are modeled having a minimum value of 0 and a
maximum of 1.

You can also manually define a DRS file using the Project Manager
perspective of the Polyspace Verification Environment. If you define a DRS
file, the software appends the automatically generated information to the DRS
file you create. Manually defined DRS information overrides automatically
generated information for all variables.

DRS cannot be applied to static variables. Therefore, the compilation flags -D
static= is set automatically. It has the effect of removing the static keyword
from the code. If you have a problem with name clashes in the global name

3-35

3 Configure Code Verification Options

space you may need to either rename one of or variables or disable this option
in Polyspace configuration.

Lookup Tables
The tool by default provides stubs for the lookup table functions. This
behavior can be disabled from the Polyspace menu. The dSPACE data
dictionary is used to define the range of their return values. Note that a
lookup table that uses extrapolation will return full range for the type of
variable that it returns.

Code Generation Options
From the TargetLink Main Dialog, it is recommended to set the option Clean
code and deselect the option Enable sections/pragmas/inline/ISR/user
attributes.

When installing the Polyspace Model Link TL product, the tlcgOptions
variable has been updated with 'PolyspaceSupport', 'on' (see variable in
'C:\dSPACE\Matlab\Tl\config\codegen\tl_pre_codegen_hook.m' file).

3-36

4

Run Code Verification

• “Specify Type of Analysis to Perform” on page 4-2

• “Run Verification with Polyspace® Model Link™ SL Software” on page 4-5

• “Run Verification with Polyspace® Model Link™ TL Software” on page 4-8

• “Monitor Verification Progress” on page 4-10

• “Code Generation and Verification with Configured Model” on page 4-12

• “MATLAB Functions For Polyspace Batch Runs” on page 4-14

• “Archive Files for Polyspace Verification” on page 4-15

4 Run Code Verification

Specify Type of Analysis to Perform
Before running a verification, you can specify what type of analysis you want
to run. You can choose to run code verification, coding rules checking, or both.

To specify the type of analysis to run:

1 From the Simulink model window, select Code > Polyspace > Options.
The Polyspace Model Link pane opens.

2 In the Verification settings from drop-down menu, select the type of
analysis you want to perform.

Depending on the type of code generated, different verification settings are
available. The following tables describe the different Verification settings.

4-2

Specify Type of Analysis to Perform

C Code Verification Settings

Verification Setting Description

Project configuration
Run code verification using the options
specified in the Project configuration.

Project configuration
and MISRA AC AGC rule
checking

Check compliance with the MISRA
AC-AGC rule set, and run code
verification using the options specified in
the Project configuration.

Project configuration
and MISRA rule checking

Check compliance with all MISRA C
coding rules, and run code verification
using the options specified in the Project
configuration.

MISRA AC AGC rule
checking

Check compliance with the MISRA
AC-AGC rule set. Verification stops after
rules checking.

MISRA rule checking
Check compliance with all MISRA C
coding rules. Verification stops after
rules checking.

C++ Code Verification Settings

Verification Setting Description

Project configuration
Run code verification using the options
specified in the Project configuration.

Project configuration
and MISRA C++ rule
checking

Check compliance with the MISRA C++
coding rules, and run code verification
using the options specified in the Project
configuration.

Project configuration
and JSF C++ rule
checking

Check compliance with all JSF C++
coding rules, and run code verification
using the options specified in the Project
configuration.

4-3

4 Run Code Verification

C++ Code Verification Settings (Continued)

Verification Setting Description

MISRA C++ rule checking
Check compliance with the MISRA C++
coding rules. Verification stops after
rules checking.

JSF C++ rule checking
Check compliance with all JSF C++
coding rules. Verification stops after
rules checking.

3 Click Apply to save your settings.

4-4

Run Verification with Polyspace® Model Link™ SL Software

Run Verification with Polyspace Model Link SL Software
To start a Polyspace verification of:

• Code generated from the top model, from the Simulink model window,
select Code > Polyspace > Polyspace for Embedded Coder > Verify
Generated Code.

• All model reference code associated with the top model, from the
model window, select Code > Polyspace > Polyspace for Embedded
Coder > Verify Generated Model Reference Code.

• Model reference code associated with a specific Model block or subsystem,
right-click the Model block or subsystem. From the context menu, select
Polyspace > Polyspace for Embedded Coder.

Note You can also start verification from the Polyspace Model Link pane
by clicking Run verification.

When the verification starts, messages appear in the MATLAB Command
window:

Starting Polyspace verification for Embedded Coder

Creating results folder C:\PolySpace_Results\results_my_first_code for system my_first_code

Checking Polyspace Model-Link Configuration:

Parameters used for code verification:

System : my_first_code

Results Folder : C:\PolySpace_Results\results_my_first_code

Additional Files : 0

Remote : 0

Model Reference Depth : Current model only

Model by Model : 0

DRS input mode : DesignMinMax

DRS parameter mode : None

DRS output mode : None

Writing DRS table in C:\PolySpace_Results\results_my_first_code\my_first_code_drs.txt

...

4-5

4 Run Code Verification

Polyspace verification of my_first_code project.

Starting at 11/04/2011, 12h35.

Follow the progress of the verification in the MATLAB Command window. If
you are running a server verification, you can follow the later stages of the
verification through the Polyspace spooler (Queue Manager).

The software writes all status messages to a log file in the results folder, for
example Polyspace_R2012b_my_first_code_05_16_2012-18h40.log:

<polyspace-c R2012b PID5864 PGID5864>

Polyspace verification of my_first_code project.

Starting at 05/16/2012, 18h40.

Options used with Verifier:

-polyspace-version=CC-8.4.0.1 (R2012b)

-date=16/05/2012

-from=scratch

-context-sensitivity=[none]

-enum-type-definition=defined-by-standard

-lang=C

-allow-negative-operand-in-shift=true

-max-processes=4

-variables-written-in-loop=custom=my_first_code_U

-author=auser

-dialect=none

-results-dir=C:\Work\results_my_first_code\my_first_code

-scalar-overflows-behavior=truncate-on-error

-target=mcpu

-data-range-specifications=C:\Work\results_my_first_code\my_first_code\my_first_code_drs.txt

-double-is-64bits=true

-big-endian=true

-functions-called-before-loop=[my_first_code_initialize]

-verif-version=1.0

-main-generator=true

-O=-O2

-variables-written-before-loop=none

-prog=my_first_code

-scalar-overflows-checks=signed

4-6

Run Verification with Polyspace® Model Link™ SL Software

-D1=CLASSIC_INTERFACE=0

-D2=HAVESTDIO

-D3=INTEGER_CODE=0

-D4=MAT_FILE=0

-D5=MODEL=my_first_code

-D6=MT=0

...

If you want to stop a client verification:

• From the Simulink model window, select Code > Polyspace > Stop
Local Verification.

• Right-click a Model block or subsystem. From the context menu, select
Polyspace > Stop Local Verification.

If you want to stop a server verification, use the Polyspace Queue Manager
(Spooler). See “Stop Server Verification Before It Completes”.

4-7

4 Run Code Verification

Run Verification with Polyspace Model Link TL Software
To start the Polyspace verification:

1 In the Simulink model window select Code > Polyspace > Polyspace
for TargetLink.

The Configuration Parameters > Polyspace Model Link pane opens.

2 Click Run verification to start the verification.

Messages appear in the MATLAB Command window:

Polyspace Model-Link for Embedded Coder
Version MBD-5.7.0.6 (R2011a)
Preparing code verification
Creating results folder
Analysing subsystem: my_first_code
Locating generated source files:

H:\Documents\MATLAB\my_first_code_ert_rtw\ert_main.c ok
H:\Documents\MATLAB\my_first_code_ert_rtw\my_first_code.c ok

Generating DRS table
my_first_code_U.In1 min max init
my_first_code_U.In2 min max init

Computing code verification options
...

Starting code verification

4-8

Run Verification with Polyspace® Model Link™ TL Software

The exact messages depend on the code generator you use. However, the
messages always have the same format:

• Name of code generator

• Version number of the plug-in

• List of source files

• DRS (Data Range Specification) information.

Follow the progress of the verification in the MATLAB Command window. If
you are running a server verification, you can follow the later stages of the
verification through the Polyspace spooler (Queue Manager).

Note Verification of a 3,000 block model will take approximately one hour to
verify, or about 15 minutes for each 2,000 lines of generated code.

4-9

4 Run Code Verification

Monitor Verification Progress

In this section...

“Client Verifications” on page 4-10

“Server Verifications” on page 4-10

Client Verifications
For client verifications, you can follow the progress of the verification in the
MATLAB Command window. The software also saves all status messages to a
log file in the results folder. For example:

Polyspace_R2012b_my_first_code_05_16_2012-18h40.log

Server Verifications
For server verifications, you can follow the initial stages of the verification
in the MATLAB Command window.

Once the compilation phase is complete, you can follow the progress of the
verification using either the Polyspace Queue Manager (Spooler), or the
Polyspace Project Manager.

Monitor Progress from Polyspace Queue Manager
To open the Polyspace Queue Manager, do one of the following:

• From the Simulink model window, select Code > Polyspace > Open
Spooler.

• Right-click a Model block or subsystem. From the context menu, select
Polyspace > Open Spooler.

For more information, see “Verification Job Management”.

Monitor Progress from Polyspace Project Manager
If you configure the Polyspace Model Link options to Open the Polyspace
Project Manager and Results Manager, you can monitor the progress of a
server verification from the Project Manager.

4-10

Monitor Verification Progress

The Project Manager opens automatically at the end of the compilation phase.
The Progress Monitor window at the bottom of the Project Manager displays
the progress of the verification.

For more information on monitoring progress from the Project Manager, see
“Monitor Progress of Verification”.

For more information on configuring the software to open the Project
Manager, see “Open Polyspace Project Manager Automatically” on page 3-22.

4-11

4 Run Code Verification

Code Generation and Verification with Configured Model
You can generate Embedded Coder code from the configured model
psdemo_model_link_sl. You can then run a Polyspace verification on the
generated code.

To open psdemo_model_link_sl in the Simulink model window:

1 In the MATLAB Command Window, enter psdemo_model_link_sl.

This command opens the psdemo_model_link_sl model that is
compatible with your version of MATLAB (either psdemo_model_link_sl,
psdemo_model_link_sl_v1, or psdemo_model_link_sl_v2).

To generate code and start the Polyspace verification:

1 Double-click the Re-install the demo block to generate the legacy code
related to the S-function.

2 If you want to apply data ranges to the input parameters, double-click the
green block Use input constraints. To remove the data range constraints,
double-click the orange block Worst case inputs.

3 Right-click the subsystem controller.

4 From the context-menu, select C/C++ Code > Build This Subsystem.

5 In the Build code for Subsystem dialog box, click Build to generate code.
When the code generation is complete, the code generation report opens.

6 Server verification is specified by default. If you want to specify
client verification, select Code > Polyspace > Options. When the
Configuration Parameters > Polyspace Model Link pane opens, clear
the Send to Polyspace server check box. Then click OK.

7 Right-click the subsystem controller. From the context menu, select
Polyspace > Polyspace for Embedded Coder. The verification starts.

To monitor the progress of the verification:

4-12

Code Generation and Verification with Configured Model

• If you specified server verification, select Code > Polyspace > Open
Spooler. Use the Polyspace Queue Manager (Spooler) to monitor progress.

• If you specified client verification, you can monitor progress from the
Command Window.

Once the verification is complete, to display the results:

1 Select Code > Polyspace > Open Results > For Generated Code.

2 In the Polyspace environment, select File > Open Result.

3 Use the Open Results dialog box to navigate to the specified results folder,
for example, C:\Polyspace_Results\controller.

4 Select the results file, for example,
RTE_px_controller_LAST_RESULTS.rte. Then click Open. The software
displays the results in the Results Manager perspective.

4-13

4 Run Code Verification

MATLAB Functions For Polyspace Batch Runs
In addition to pslinkrun and pslinkoptions, you can run the following
commands in the Command Window.

Command Description

PolySpaceSpooler
Open the Polyspace Queue Manager (Spooler), which allows you to
manage server verifications.

PolySpaceViewer Open Polyspace verification environment Results Manager perspective.

PolySpaceSetTemplateCFGFileSelect a template file, for example, during a batch run.

PolySpaceGetTemplateCFGFileGet the currently selected template file (empty by default).

PolySpaceReconfigure
In case of a Polyspace release update without enabling the MATLAB
plug-in.

PolySpaceAnnotation

Annotate block in Simulink model, which then appears in Polyspace
results. You can annotate either run-time checks or coding rule
violations, and provide a classification, status, and comment for each
annotation.

ver
Display version numbers of MathWorks® products, including Polyspace
Model Link products.

4-14

Archive Files for Polyspace® Verification

Archive Files for Polyspace Verification

In this section...

“Template File in MATLAB Installation folder\polyspace\” on page
4-15

“Files Used in Model Folder” on page 4-15

“Auto-Generated Files in Model Folder” on page 4-16

Template File in MATLAB Installation
folder\polyspace\
When a verification is first performed, the software creates a copy of
the file cfg\templateEmbeddedCoder.cfg in the local model folder,
model_folder\model_name-polyspace.cfg. The software does not create
a copy in subsequent verifications.

The file cfg\templateEmbeddedCoder.cfg contains the template Polyspace
configuration settings to support the TargetLink code generator. The
templateTargetLink.cfg file can be updated with site specific settings, to
facilitate verification of new models.

You can use the MATLAB command
PolyspaceSetTemplateCFGFile(config_filename) to change the name and
location of the file that contains the template configuration. For example,
when you run Polyspace verification as part of an automated process, which
specifies the template configuration file, erases the local copy in the model
folder, and starts the verification.

Files Used in Model Folder

• model-name-polyspace.cfg — As mentioned
above this file is copied from the MATLAB
installation_folder\polyspace\cfg\templateEmbeddedCoder.cfg file
the first time a verification is run on a model. It is subsequently modified
by the Project Configuration block, or the Configure button in the option

4-15

4 Run Code Verification

in the Polyspace Analyzer dialog. It contains the Polyspace settings for
verifying the current model.

• polyspace_additional_file_list.txt — This file is created if the
Advanced option, Select Files is used in the Polyspace Analyzer dialog
box. This option allows files that are not part of the model to be analyzed
together with the model. For example these files could contain custom
lookup table code, custom stubs, device driver code etc. The Enable
additional file list option needs to be set together with configuring the
list of extra files to analyze.

Auto-Generated Files in Model Folder
These files are generated from the model for each verification when it is
started, and do not need archiving:

• model name_drs.txt — The DRS information extracted automatically
from the model.

• polyspace_include_dir_list.txt — List of compilation include
directories extracted from the mode.

• polyspace_file_list.txt— List of file contained in the model to analyze

• model name_last_parameter.txt — The last set of parameters used in
the Polyspace Analyzer dialog box.

4-16

5

Review Verification Results

• “View Results in Polyspace Verification Environment” on page 5-2

• “Identify Errors in Simulink Models” on page 5-5

5 Review Verification Results

View Results in Polyspace Verification Environment
When a verification completes, you can view the results using the Results
Manager perspective of the Polyspace verification environment.

To view your results:

1 From the Simulink model window, select Code > Polyspace > Open
Results.

Note If you setModel reference verification depth to All and selected
Model by model verification, the Select the Result Folder to Open
in Polyspace dialog box opens. The dialog box displays a hierarchy of
referenced models from which the software generates code. To view the
verification results for code generated from a specific model, select the
model from the hierarchy. Then click OK.

You can also open results through a Model block or subsystem. From the
Simulink model window, right-click the Model block or subsystem, and
from the context menu, select Polyspace > Open Results.

After a few seconds, the Results Manager perspective of the Polyspace
verification environment opens.

5-2

View Results in Polyspace® Verification Environment

2 On the Results Summary tab, click any check to review additional
information.

In this example, the Check Details pane shows information about the
orange check, and the Source pane shows the source code containing the
orange check.

5-3

5 Review Verification Results

For more information on reviewing run-time checks, see “Run-Time Error
Review”.

For information on specific checks, see “Run-Time Check Reference”.

Note When you run verification on a Polyspace server, the software
automatically downloads your results to the client when verification
completes. You can also download server results manually. For more
information, see “Download Results from Server to Client”.

5-4

Identify Errors in Simulink® Models

Identify Errors in Simulink Models
Polyspace Model Link products allow you to trace run-time checks in your
verification results directly to your Simulink model.

Consider the following example, where the Check Details pane shows
information about an orange check, and the Source pane shows the source
code containing the orange check.

This orange check shows a potential overflow issue when multiplying the
signals from the inports In1 and In2. To fix this issue, you must return to
the model.

To trace this run-time check to the model:

5-5

5 Review Verification Results

1 Click the blue underlined link (<Root>/Product) immediately before the
check in the Source pane. The Simulink model opens, highlighting the
block with the error.

2 Examine the model to find the cause of the check.

In this example, the highlighted block multiplies two full-range signals,
which could result in an overflow. This could be a flaw in:

• Design — If the model is supposed to be robust for the full signal range,
then the issue is a design flaw. In this case, you must change the model
to accommodate the full signal range. For example, you could saturate
the output of the previous block, or bound the signal with a Switch block.

• Specifications — If the model is supposed to work for specific input
ranges, you can provide these ranges using block parameters or the base
workspace. The verification will then read these ranges from the model.
See “Specify Signal Ranges” on page 2-9.

Applying either solution should address the issue and cause the orange
check to turn green.

If your operating system is Windows Vista™ or Windows® 7, you may
encounter problems with the trace-back functionality if one of the following
conditions apply:

• User Account Control (UAC) is enabled.

• You do not have administrator privileges.

If you have a MATLAB session running and your model is open, a possible
workaround is:

1 Open a DOS window in administrator mode.

2 Go to your MATLAB installation folder.

3 From the bin folder, enter matlab -regserver.

4 Click the link again.

5-6

6

Functions

pslinkrun

Purpose Run Polyspace verification from MATLAB command line

Syntax resultsFolder = pslinkrun
resultsFolder = pslinkrun(system)
resultsFolder = pslinkrun(system,opts)
resultsFolder = pslinkrun(system,opts,topModelRef)

Description resultsFolder = pslinkrun runs a Polyspace verification on
generated code from the current system and returns the location of the
results folder. It uses the configuration options associated with the
current system. The current system, or model, is the system returned
by the command bdroot.

resultsFolder = pslinkrun(system) runs a verification on the code
generated from the model or subsystem specified by system. This
verification uses the configuration options associated with system.

resultsFolder = pslinkrun(system,opts) verifies system using the
configuration options from the options object opts.

resultsFolder = pslinkrun(system,opts,topModelRef) uses
topModelRef to specify which generated code to verify.

Input
Arguments

system - Model or system
bdroot (default) | model or system name

Model or system that you want to verify, specified as a string with the
model or system name in single quotes. The default value is the system
returned by bdroot.

Example: resultsFolder = pslinkrun('demoC'). demoC is the name
of a model.

Data Types
char

6-2

pslinkrun

opts - Configuration options
options associated with system (default) | Polyspace Model Link
options object

Configuration options for the verification, specified as an options
object or the options already associated with the model or system. The
function pslinkoptions creates an options object.

Example: pslinkrun('demoC', opts_demo). demoC is the name of a
model and opts_demo is an options object.

topModelRef - Indicator for model reference verification
false (default) | true

Indicator for model reference verification, specified as true or false.

• If topModelRef is false (default), the software verifies all code
generated from the top model including all the referenced models.

• If topModelRef is true, Polyspace verifies only code generated from
models referenced by the top model.

This verification choice is equivalent to choosing between Verify
Generated Code and Verify Generated Model Reference Code in
the Simulink Polyspace options.

Data Types
logical

Output
Arguments

resultsFolder - Variable for location of the results folder
string

Variable for location of the results folder, specified as a string. The
default value of this variable is results_$ModelName$. This value can
be changed in the configuration options using pslinkrun.

Data Types
char

6-3

pslinkrun

Examples Run a Polyspace Verification from the Command Line

Use a Simulink model to generate code, set configuration options, and
then run a verification from the command line.

Open the Simulink model datatypedemo:

open('datatypedemo')

From the Simulink menu, select Code > C/C++ Code > Code
Generation Options, and then select the Code Generation pane.

Change the System target file to ert.tlc for Embedded Coder.

Clear the Generate makefile option.

Click Apply.

Select Code > C/C++ Code > Build Model to build the model and
generate code.

From the MATLAB command line, create a Polyspace options object
from the model:

opts = pslinkoptions('datatypedemo');

Change the configuration to run the verification in client mode, and
check MISRA C coding rules:

opts.SendToPolyspaceServer = false;
opts.VerificationSettings = 'PrjConfigAndMisra'

opts =

ResultDir: 'results_$ModelName$'
VerificationSettings: 'PrjConfigAndMisra'

OpenProjectManager: 0
AddSuffixToResultDir: 0

EnableAdditionalFileList: 0
AdditionalFileList: {0x1 cell}

6-4

pslinkrun

SendToPolyspaceServer: 0
InputRangeMode: 'DesignMinMax'
ParamRangeMode: 'None'

OutputRangeMode: 'None'
ModelRefVerifDepth: 'Current model only'

ModelRefByModelRefVerif: 0
CxxVerificationSettings: 'PrjConfig'

Run a verification:

results = pslinkrun('datatypedemo',opts)

See Also pslinkoptions | “MATLAB Functions For Polyspace Batch Runs”
on page 4-14 |

6-5

pslinkoptions

Purpose Creates options object to customize Polyspace verification from
MATLAB command line

Syntax opts = pslinkoptions(codegen)
opts = pslinkoptions(model)

Description opts = pslinkoptions(codegen) returns an options object with the
configuration options for code generated by codegen.

opts = pslinkoptions(model) returns an options object with the
configuration options for the Simulink model model.

Input
Arguments

codegen - Code generator
'ec' | 'tl'

Code generator, specified as either 'ec' for Embedded Coder or 'tl'
for TargetLink. Each argument creates a Polyspace options object with
configuration options specific to that code generator.

For a description of all configuration options and their values, see
Configuration Options on page 6-7.

Example: embedded_coder_optsObj = pslinkoptions('ec')

Example: target_link_optsObj = pslinkoptions('tl')

Data Types
char

model - Simulink model
model name

Simulink model, specified by the model name. Creates a Polyspace
options object with the configuration options of that model. If no options
have been set, the object has all default configuration options. If a
code generator has been set, the object has the default options for that
code generator.

6-6

pslinkoptions

For a description of all configuration options and their values, see
Configuration Options on page 6-7.

Example: model_optsObj = pslinkoptions('my_model')

Data Types
char

Output
Arguments

opts - Polyspace configuration options
options object

Polyspace configuration options, returned as an options object. The
object is used with pslinkrun to run a verification from the MATLAB
command line.

The following table provides possible values and a description for each
configuration option. Depending on the code generator, the object will
have different configuration options. The value in curly brackets {} is
the default.

Configuration Options

Configuration
Option

Values Description

ResultDir {'C:\Polyspace_Results\results_$ModelName$'}Specify location of results folder. Can be either
an absolute path or a path relative to the current
folder.

VerificationSettings {'PrjConfig'}
|
'PrjConfigAndMisraAGC'
|
'PrjConfigAndMisra'
|
'MisraAGC'
| 'Misra'

Specify checking of coding rules for C verification:
'PrjConfig' – Inherit all options from project
configuration and run complete verification.

'PrjConfigAndMisraAGC' – Inherit all options
from project configuration, enable MISRA AC
AGC rule checking, and run complete verification.

'PrjConfigAndMisra' – Inherit all options from
project configuration, enable MISRA C rule
checking, and run complete verification.

6-7

pslinkoptions

Configuration Options (Continued)

Configuration
Option

Values Description

'MisraAGC' – Enable MISRA AC AGC rule
checking, and run compilation phase only.

'Misra' – Enable MISRA C rule checking, and
run compilation phase only.

CxxVerificationSettings

Only for Polyspace
Model Link SL

{'PrjConfig'}
|
'PrjConfigAndMisraCxx'
|
'PrjConfigAndJSF'
|
'MisraCxx'
| 'JSF'

Specify checking of coding rules for C++
verification: 'PrjConfig' – Inherit all options
from project configuration and run complete
verification.

'PrjConfigAndMisraCxx' – Inherit all options
from project configuration, enable MISRA C++
rule checking, and run complete verification.

'PrjConfigAndJSF' – Inherit all options from
project configuration, enable JSF rule checking,
and run complete verification.

'MisraCxx' – Enable MISRA C++ rule checking,
and run compilation phase only.

'JSF' – Enable JSF rule checking, and run
compilation phase only.

OpenProjectManager {false} |
true

Open Polyspace Project Manager to monitor
verification progress. When verification is
complete, you can switch to the Results Manager
perspective to review the results.

AddSuffixToResultDir {false} |
true

Modify location of results folder by appending
a unique number to the folder name instead of
overwriting an existing folder.

6-8

pslinkoptions

Configuration Options (Continued)

Configuration
Option

Values Description

EnableAdditionalFileList{false} |
true

Specify whether additional files must be verified.
You can specify these additional files through the
AdditionalFileList option

AdditionalFileList {0x1 cell} List additional files to verify.

SendToPolyspaceServerfalse |
{true}

Select client or server verification.

InputRangeMode {'DesignMinMax'}
|
'FullRange'

Specify whether to use data ranges defined in
blocks and workspace or treat inputs as full-range
values.

ParamRangeMode {'None'} |
'DesignMinMax'

Specify whether to use constant values of
parameters specified in the code, or use a range
defined in blocks and workspace.

OutputRangeMode {'None'} |
'DesignMinMax'

Specify whether to apply assertions to outputs
(using a range defined in blocks and workspace).

AutoStubLUT

Only for Polyspace
Model Link TL.

{false} |
true

Specify whether to include Lookup Table code in
the verification.

6-9

pslinkoptions

Configuration Options (Continued)

Configuration
Option

Values Description

ModelRefVerifDepth

Only for Polyspace
Model Link SL.

{'Current
model
only'} |
'1' | '2' |
'3' | 'All'

Specify verification of generated code with respect
to model reference hierarchy levels.

ModelRefByModelRefVerif

Only for Polyspace
Model Link SL

{false} |
true

Specify whether to verify code from models within
model reference hierarchies jointly or separately.

Examples Use a Simulink model to create and edit an options objects

Open the Simulink model datatypedemo:

open('datatypedemo')

From the MATLAB command line, create a Polyspace options object
from the model:

model_optsObj = pslinkoptions('datatypedemo')

model_optsObj =

ResultDir: 'results_$ModelName$'
VerificationSettings: 'PrjConfig'

OpenProjectManager: 0
AddSuffixToResultDir: 0

EnableAdditionalFileList: 0
AdditionalFileList: {0x1 cell}

SendToPolyspaceServer: 1
InputRangeMode: 'DesignMinMax'
ParamRangeMode: 'None'

OutputRangeMode: 'None'

6-10

pslinkoptions

ModelRefVerifDepth: 'Current model only'
ModelRefByModelRefVerif: 0

AutoStubLUT: 0
CxxVerificationSettings: 'PrjConfig'

The model does not have a specific code generator set, so all
configuration options appear.

Change the results folder name and set the configuration to open the
Polyspace Project Manager:

model_optsObj.ResultDir = 'results_1_$ModelName$';
model_optsObj.OpenProjectManager = 1;

model_optsObj =

ResultDir: 'results_1_$ModelName$'
VerificationSettings: 'PrjConfig'

OpenProjectManager: 1
AddSuffixToResultDir: 0

EnableAdditionalFileList: 0
AdditionalFileList: {0x1 cell}

SendToPolyspaceServer: 1
InputRangeMode: 'DesignMinMax'
ParamRangeMode: 'None'

OutputRangeMode: 'None'
ModelRefVerifDepth: 'Current model only'

ModelRefByModelRefVerif: 0
AutoStubLUT: 0

CxxVerificationSettings: 'PrjConfig'

Create and edit an options object for Embedded Coder at
the command line

Create a Polyspace options object called new_optsObj with Embedded
Coder parameters:

new_optsObj = pslinkoptions('ec')

6-11

pslinkoptions

new_optsObj =

ResultDir: 'results_$ModelName$'
VerificationSettings: 'PrjConfig'

OpenProjectManager: 0
AddSuffixToResultDir: 0

EnableAdditionalFileList: 0
AdditionalFileList: {0x1 cell}

SendToPolyspaceServer: 1
InputRangeMode: 'DesignMinMax'
ParamRangeMode: 'None'

OutputRangeMode: 'None'
ModelRefVerifDepth: 'Current model only'

ModelRefByModelRefVerif: 0
CxxVerificationSettings: 'PrjConfig'

Change the SendToPolyspaceServer value of your object to run the
verification in client mode:

new_optsObj.SendToPolyspaceServer = false

new_optsObj =

ResultDir: 'results_$ModelName$'
VerificationSettings: 'PrjConfig'

OpenProjectManager: 0
AddSuffixToResultDir: 0

EnableAdditionalFileList: 0
AdditionalFileList: {0x1 cell}

SendToPolyspaceServer: 0
InputRangeMode: 'DesignMinMax'
ParamRangeMode: 'None'

OutputRangeMode: 'None'
ModelRefVerifDepth: 'Current model only'

ModelRefByModelRefVerif: 0
CxxVerificationSettings: 'PrjConfig'

6-12

pslinkoptions

Change the configuration to check for both run-time errors and MISRA
C coding rule violations:

new_optsObj.VerificationSettings = 'PrjConfigAndMisra'

new_optsObj =

ResultDir: 'results_$ModelName$'
VerificationSettings: 'PrjConfigAndMisra'

OpenProjectManager: 0
AddSuffixToResultDir: 0

EnableAdditionalFileList: 0
AdditionalFileList: {0x1 cell}

SendToPolyspaceServer: 0
InputRangeMode: 'DesignMinMax'
ParamRangeMode: 'None'

OutputRangeMode: 'None'
ModelRefVerifDepth: 'Current model only'

ModelRefByModelRefVerif: 0
CxxVerificationSettings: 'PrjConfig'

See Also pslinkrun | “MATLAB Functions For Polyspace Batch Runs” on page
4-14 |

6-13

	toc
	Getting Started with Model Link Products
	Product Overview
	Polyspace Model Link SL
	Polyspace Model Link TL

	Install Polyspace Model Link Products
	Code Verification Approach
	Verify Code from a Simple Model
	Create Simulink Model and Generate Code
	Run Polyspace Verification
	View Results in Polyspace Verification Environment
	Trace Error to Simulink Model
	Specify Signal Ranges
	Verify Updated Model

	Configure Model for Code Verification
	Overview of Model Configuration for Code Generation and Verifica
	Configure Embedded IDE Link Model for Code Verification
	Recommended Polyspace Settings for Code Verification
	Check Simulink Model Settings
	Specify Signal Ranges
	Specify Signal Range through Source Block Parameters
	Specify Signal Range through Base Workspace

	Annotate Blocks with Known Checks or Coding-Rule Violations
	Code Annotation for Justifying Polyspace Checks

	Configure Code Verification Options
	Overview of Polyspace Configuration
	Include Handwritten Code in Verification
	Specify Client or Server Verification
	Configure Data Range Settings
	Configure Verification of Model Reference Code
	Specify Location of Results
	Check Coding Rules Compliance
	Configure Polyspace Verification Options
	Configure Polyspace Project Properties
	Create a Polyspace Configuration File Template
	Specify Header Files for Target Compiler
	Open Polyspace Project Manager Automatically
	Remove Polyspace Options From Simulink Model
	Main Generation for Model Verification
	main for Generated Code
	Polyspace Model Link SL Considerations
	Overview
	Subsystems
	Default Options
	Data Range Specification
	Recommended Polyspace Options for Verifying Generated Code
	Hardware Mapping Between Simulink and Polyspace

	Polyspace Model Link TL Considerations
	Overview
	Subsystems
	Default Options
	Data Range Specification
	Lookup Tables
	Code Generation Options

	Run Code Verification
	Specify Type of Analysis to Perform
	Run Verification with Polyspace Model Link SL Software
	Run Verification with Polyspace Model Link TL Software
	Monitor Verification Progress
	Client Verifications
	Server Verifications
	Monitor Progress from Polyspace Queue Manager
	Monitor Progress from Polyspace Project Manager

	Code Generation and Verification with Configured Model
	MATLAB Functions For Polyspace Batch Runs
	Archive Files for Polyspace Verification
	Template File in MATLAB Installation folder\polyspace\
	Files Used in Model Folder
	Auto-Generated Files in Model Folder

	Review Verification Results
	View Results in Polyspace Verification Environment
	Identify Errors in Simulink Models

	Functions

	tables
	C Code Verification Settings
	C++ Code Verification Settings
	C Code Verification Settings
	C++ Code Verification Settings
	Configuration Options

